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0. Introduction and summary. Some principal technical 

developments of Part I of this paper are derived here in more 

elementary fashion, under tho restriction to statistical ex- 

periments with discrete sample spaces, but under the more 

general condition that any finite number of (simple) statistical 

hypotheses may be represented. For any such experiment, it is 

shown that for typical purposes of Informative statistical 

Inference, just the likelihood function on an observed outcome 

can and should be reported and Interpreted to provide inferences 

of general Interest concerning the statistical hypotheses (or 

unknown parameter values); and that for such purposes, the 

structure of the experiment from which an outcome was obtained 

is Irrelevant, apart from determination of the likelihood 

function. Specific techniques for interpretation of likelihood 

functions are developed, particularly "intrinsic confidence 

methods" which constitute an appropriate generalization and 

refinement of confidence methods and conditional confidence 

methods. The relations of such methods to traditional methods 

based on the " principle of insufficient reason", are discussed, 

as to form and interpretation. In Sections 9-11, analogous 

developments are given for experiments involving translation 

or scale parameters. 



Part Aj k simple hypotheses,, 1 

1. The canonical form of an experiment. We consider a 

given experiment E, assuming that questions of experimental 

design, including those of choice of a sample size or possibly 

a sequential sampling rule, have been dealt with, and that the 

sample space of possible outcomes x of E is a specified set 

S =[x I. We assume that each of the possible distributions of X 

is represented by a specified elementary probability function 

f.Cx): if the hypothesis H. is true, the probability that E 

yields an outcome x in A is 

pi(A) ^/v.^u) , 
A 

where p. is a specified 6"-finite measure on S, and A is any 

measurable set. 

We assume here that a finite number k of hypotheses are 

under consideration: H, ,...11, . k > 2. We shall omit comments 

on the particular features of the case of binary experiments; 

k = 2, which were discussed in Part I; and we shall refer to 

Part I at some points where methods or interpretations are 

immediately applicable without complication to experiments 

with k > 2. 

For any binary experiment E, let 

rij = rij^x) = l0Sff1(x)/fj(x)3, i,j = 1, ... k, i ^ j. 

Let 

r = r(x) = [r12(x),... rlk(x), ^(x),.. .r2k(x),.. .r^k_1^k(x) ] 
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It Is well-known that r is a sufficient statistic, which may- 

or may not be minimal sufficient, depending upon the structure 

of E. (If f^x) = f.(x) = 0 or oo , we define ^.(x) = 0. The 

statistic r contains components which are redundant in many 

experiments; for example, if 0 < fpW < 03 for all x, then 

for all x we have r^x) = r1p(x) + rp-,(x). However it is 

convenient to tolerate such possible redundancies for purposes 

of general discussion, and to take account of them appropriately 

for more specific purposes.) 

Let 

P1(r) = Prob [r(X) < r| Hj, 1 = l,.,.k, 

where the inequality between vectors denotes the corresponding 

inequality between respective coordinates: r.Ax)  < r. .. In 

general, FAr)  is a generalized multivariate distribution 

function, and r(X) is a generalized multivariate random 

variable, in the sense that some coordinates of the latter may 

assume Infinite values with positive probability under some 

hypotheses. The set of k distribution functions F. of the 

statistic r may be taken as a canonical form of any experiment. 

For some purposes, a different canonical representation 

of an experiment may be more convenient. For example, let 

k = 5^ let g = (gj^So^S^) be  any set of formal prior probabili- 

ties for the respective hypotheses. Let g^(x) denote the 

formal posterior probability of H,, given that X = x, for each 

1 and x. Let d(x) be any (measurable) function such that, 

for each x, the value of d(x) is the index (l = 1,2, or 3) of 
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5 
the hypothesis H. (or one of the hypotheses) with greatest 

posterior porbability, given X = x; that is, d(x) is a formal 

Bayes solution, with respect to the prior distribution g. Let 

a. = Prob [d(X) ^ i|H.], i = 1,2,3 and let a ^a^a^ou). 

Then a is the set of error-probabilities a., under respective 

hypotheses H., of the inference (or decision) function d(x). 

A basic part of the theory of statistical decision functions 

is the investigation, for various experiments, of the set of 

all such points a, under all possible choices of g. It is 

well-known that, for each g, the set of such points is either 

a single point, or a line-segment, or a convex subset of a plane 

(that is, a convex set, of dimension at most (k-1) = 2); and 

that, for all g, the set is a convex surface in the unit cube. 

(The preceding assumes tacitly, without essential loss of 

generality, that x includes an observation on an auxiliary 

randomization variable.) But 

1 - c^ = Prob[r12(X) .> logCgg/g^, r13(X) .?. logfgy^) 1^], 

1 - a2 = Prob[r12(X) .1. log(g2/g1), r^U) .>. log^/gg) |H2], and 

1 - o^ = Prob[r13(X) .?. log(g3/g1), r^U) .< logig^/g^lE^], 

for any d(x) corresponding to a given g; here the Inequality 

symbols .>. and .5. refer to the arbitrary definition of d(x) on 

points where equality holds. In experiments for which the 

distributions of components r. .(X) are continuous, these equations 

define a unique point a = a(g) for each g; since r1,(x)=r12(x)+r2,(xl 



the distribution P,(r) of r(X) under H, is represented 

directly by the above equation for 1-a, when g is varied over 

its range. Similarly the distributions P2(r) and P,(r) are 

represented by the equations for l-ou and l-a-,. The same 

interpretations can be given, with attention to details, in 

cases of discontinuous distributions. Thus the convex surface 

of points a is a canonical form of an experiment, which is 

convenient for some purposes. 

In the next sections we shall for the most part consider 

experiments with discrete distributions f.(x.) (or, slightly 

more generally, discrete distributions P.(r)). Por our purposes, 

it will be convenient to represent each such experiment E by 

a stochastic matrix: 

m 
E = (p. J, 1 = l,...k, j = 1,.. .m; ]>~ p. . = 1 for each i. 

Here p. . = Prob [X = j|H.]; the sample space is the range of j; 

m may be finite or infinite; and in the latter case the range of 

j can when convenient be taken to be the doubly-infinite sequence 

of Integers, - CD < j < co . 

Redundancies in such representations of experiments may be 

eliminated as follows, when desired: (A) If two columns of such 

a matrix are proportional (p. . = cplh for some j ^h and some 

c, for each i), these columns may be deleted and replaced by 

the single column having elements (p. . + P^ h with an appropriate 

revision of the subscripts j. (Since the probability of X = j, 

given that X = j or f-, is independent of 1, the "simpler" 
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experiment is not less Informative.) If all such possible 

simplifications are made, j Is a minimal sufficient statistic. 

(B) Since a permutation of columns represents a re-labellng of 

sample points, experiments differing only in this respect are 

equivalent. (C) When convenient, a standard manner of ordering 

columns may be adopted. 

2. Some algebra of statistical experiments. Except where 

the contrary is indicated, we assume that experiments for some 

fixed number k of hypotheses are under consideration. An 

experiment E = (p, .) will be called simple if its matrix has 

(after the simplifying operations described above) at most k 

columns; that is, a simple experiment has not more sample points 

(after simplification) than hypotheses. The completely Informative 

experiment Is (equivalent to) the identity matrix of order kj 

^he ^informative experiment is (equivalent to) the single- 

column nrnt'id.'^ with elements all unity; all other experiments 

(not necessarily simple) are called Incompletely Informative. 

Any experiment having two identical rows (p.. = p, . for some 

1 j^ h and all j) will be called degenerate; even many replications 

of such an experiment are without value for distinguishing between 

certain of the hypotheses. An experiment E is called at 

least as informative as an experiment E*, or is "said to 

contain E*, if there exists a stochastic matrix Q = (Q-tJ such 

*   m 

that E* = EQ; that is, if p  = T~ p±h  q... It is known' ' 

that E contains E* if and only if the convex hypersurface of 

points a, which constitutes a canonical form of E in the sense 

Illustrated in the preceding Section, encloses the convex hyper- 
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surface of points a* corresponding to E*. The relation "contains" 

determines a partial ordering of all experiments ft)r k hypotheses. 

Let K. h = 1, 2, ..., denote any sequence of experiments, and 

let g = (g,, g2, ...) be any sequence of probabilities, jj  g, = 1, 

assigned formally to the respective experiments. Then 

E =  )  © Sy, ^h represents "the mixture g of the experiments E. " : 

the experiment E consists of the observation of a value h of 

the random variable H with distribution g, followed by use of 

the corresponding experiment E,. If each of the " component" 

experiments E, can be represented by a finite matrix (P^J> 

then E is easily represented (before possible simplification) 

by the matrix (consisting of successive finite blocks) 

E = (g-L P-jMSg Pij)* •• 

Example 1. Let E = 
.6 .2 .2 
.2  .6  .2 
.2  .2  .6 

and let E 
** 1 

7 

i  3 y 
5 1 3 
3 3 1 

Let E be the mixture g = (5/12, 7/12) of these respective 

experiments. Then 

E = 12 ^    ^ 12 ^      ~ T2 

3 11 13 3 
13 1 3 13 
113     3    3    1 

It is readily verified that E has an alternative decomposition 

-  1    1    1 
represented by E = -- E, 3} -^ E2 tf) ^ E^,, where 

El - 7 

3 1 

1 3 

1 3 

1   3 1   3 
T?      -   1 

'    E2 " 7 3   1 '    E3 = 7 1   3 

1   3 J 
3   1 
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An experiment will be called cyclic-symmetric (abbreviated 

" c.s.") if it can be represented in the form E = (p. .) = (A,,!«,... 

where each A, is a square cyclic-symmetric matrix. (A square 

matrix (a ) of order k is cyclic-symmetric if its elements 

satisfy auv = au+1^+1 and akv = a^^, for u,v = l,...(k-l).) 

Examples are the experiments E , E , and E of Example 1 above. 

Lemma 1. Every experiment E = (p.,) is a component of some 

cyclic-symmetric experiment. 

Proof; Let Eh = (pjjh where p^. - P^i+fri»   ^^ h  = l.---^, 

where a subscript exceeding k is to be diminished by kjthus E-, = E. 

Let 
k E = 5^ k V 

Even if E is not finite, it is possible to order the columns 

of E so as to exhibit its cyclic symmetry, thus:  the first k 

columns of E are respectively the initial columns of E ,..E, , 

each multiplied by 1/k; the next k columns of 1 are respectively 

the second columns of these matrices, multiplied by 1/k; etc. 

Example; Let E = E-, of the preceding Example 1. Then Ep, E^, 

and E are as defined in that example. 

Lemma 2: Every cyclic-symmetric experiment is equivalent to a 

mixture of cyclic-symmetric simple experiments. 

Proof: If E is cyclic-symmetric, it can be given the form 

E = (A-^Ap,...), where each A, = (a. .) is a square cyclic- 

symmetric matrix. Let gh = }      a., and let Eh = (l/gh) A., 

for each h. Then E, is a eyelie-symmetric simple experiment, 

and E admits the decomposition E = > j-Bg. E, = (A-^Ag,...). 



Example; In Example 1, E is c.s. and has the simple c.s. components 

E*, E**. 

5. The partial ordering of simple eyelie-symmetric experiments. 

For any fixed number k of hypotheses, we consider in this 

Section simple c.s. experiments and their partial ordering 

defined as above. For such experiments, E contains E* if and 

only if E = EQ for some square stochastic matrix Q; our 

primary purpose is to interpret this partial ordering more 

explicitly in terms of the forms of the c.s. matrices representing 

such experiments. It will suffice for our purpose to illustrate 

the general case by a detailed discussion of the case k = 3- 

"ILL 

Form 1; Let E,. = c L 1 L 

L L 1 

, where c = 1/(1+2L) and L is 

any number satisfying 0 ^ L < 1. The product of two such 

matrices, with respective parameters L and L', is easily found 

to be ET„ , which is of the same form with L" = (L+L'+LL'l/U+SLL'). 

We have L" = 1 only if L or L' = 1. We have L" >  max (L^L'^with 

strict equality only if L or L1 = 0. Thus the class of experi- 

ments of form 1 is simply ordered, with smaller values of L 

representing more informative experiments. 

L 1 1 

Form 2; Let Ej = c* , where c* = 1/(2 + L) and L 1 L 1 

1 1 L 

is any number satisfying 0 ^ L j^ 1. The product of such a 

matrix with one of form 1 above is easily found to be an 

experiment E*,, of form 2, with L" = (L + 2L,)/(1 + L' + LL') > L. 

Thus the class of experiments of form 2 is simply ordered, 

with smaller values of L representing more informative experiments. 



Form 3. Let E = c 

1 L L1' 
L' 1 L 

L L' 1 ^ 

, where c = l/U+L+L'), 

with 0 <lt*  < L < I.    This includes the preceding forms as 

special cases and in fact includes all c.s. simple experiments 

with k = 3. We proceed to consider the partial ordering of 

such experiments, writing E = (PiJ* 

For each such experiment E, let a = p,p + p.,,. It is 

easily verified that the parameter a of E is the common coordinate 

of one of the points of the (a,,0^0,)-surface which represents 

E in the canonical form described in Section 1 above. In 

particular, a is the probability (under each hypothesis) of an 

error, when the rule of maximum likelihood is used to choose one 

hypothesis on the basis of one observation from E (with equi- 

probable randomization in cases of non-unique maxima of the 

likelihood function). This inference rule is an admissible 

one, since it is readily derived as a Bayes solution of the 

problem described, with respect to the uniform prior distribution 

g = (1/3,1/3,1/3). 

Again, for each such experiment E, let ß = p,^. For the 

problem of giving a confidence set estimator which excludes at 

least one of the hypotheses and has maximum probabilities of 

including the true hypothesis, a Bayes solution with respect 

to the uniform prior distribution gives the maximum likelihood 

rule which excludes just the least likely hypothesis (with 

exclusion of one chosen by equlprobable randomization in cases 

of non-unique minima). The error-probability of this rule, under 

each hypothesis, is the parameter ß of E. 
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A simple necessary condition for E to contain E Is that 

a < a* and ß ^ ß*; for If E failed to achieve error-probabili- 

ties at least as small as E* in the two specific problems just 

described, it would fall to contain E*. This condition may 

be described thus: if E contains E , then the distributions 

in E are at least as highly concentrated as those in E*, in the 

sense that under each hypothesis the most probable outcome 

has probability at least as high, and the least probable outcome 

has probability at least as small, in E as in E*. 

To illustrate that the preceding condition is not sufficient 

for comparability of experiments, consider 

El = 

111 
2    3   "5 
111 

111 
5   "5   2 

Eo - 

111 
2   7   if 

111 
?    2    7 
1    1 v 1 

TF   ■?    2 

The above condition is satisfied, since a, = ou = -p and 

1      1 
ß, = -r •< ßp = -jr . Consider a third specific inference problem, 

that of giving a point-estimate of the parameter 1=1, 2, or 3, 

with estimators to be appraised in terms of their probabilities 

of each of the possible kinds of errors.  (The parameter o, is 

simply a total probability of incorrect estimates.) Any 

non-randomized estimator may be represented by a function d = d(J) 

of the outcome j which takes values in the range of i. Any 

randomized estimator may be represented as a "mixture" of such 

non-randomized estimators; for example, if d(j) and d^j) are 

non-randomized estimators, then d'^j) = c d{j) tB (l-c) d(j) 

represents the randomized estimator which, when j is observed, 

takes the value d(j) with probability c and takes the value d^j) 
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with probability (1-c). For any estimator d = d(j), possibly 

randomized, let aiu = a^d) = aiu[d(.)] = Prob[d{X)=uJHi] if 

u •/ i, a.u = 0 if u = i, for u,i = 1,2,3. 

When Ep is used, the (admissible maximum likelihood) estimator 

d(j) = j has all error-probabilities a. s -q,  u ^ i. When B. 

is used, it can be verified that every estimator (including 

randomized estimators) has at least one error-probability 

1 
exceeding j.    Thus E, does not contain Eg. 

For experiments of the general form 3,  we offer here no 

conveniently-applicable necessary and sufficient conditions 

for comparability of experiments in terms of their parameters 

L and L'; nor will this be necessary for our purposes. 

For k > 5, similar considerations are applicable. For 

example, among c.s. experiments of the form p,, >  p,^ = P-.^ :=""=Pik- 

it is easily verified as above that there is a simple ordering 

by the parameter p,-,; the latter parameter is the probability, 

under each hypotheses, that the most likely hypothesis will be 

the true hypothesis. 

4. Inference methods with intrinsic justifications. In the 

preceding Section, for various c.s. simple experiments there were 

described a number of methods of statistical inierence or 

decision-making, including point-and confidence-set estimators; 

in addition, a number of methods of testing hypotheses were 

represented implicitly by the confidence-set methods described, 

in virtue of well-known simple relations between the two kinds 

of methods. For each of these methods, a more or less complete 

description was given of the probabilities of the various 
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possible appropriate and inappropriate inferences or decisions 

under respective hypotheses. The complete description of such 

relevant probabilistic properties of a given inference method 

can in principle always be determined; and for a given purpose 

of application, various possible inference methods can in 

principle be evaluated and compared on ttebasis of such probabi- 

listic properties. Such considerations are an extension of 

those discussed in detail for the case k = 2 in Sections 7-9 of 

the preceding Part I, B: "Inference methods with probabilistic 

Justifications." Each such probability is defined directly in 

the experiment under consideration; and each such error- proba- 

bility can be interpreted in terras of relative frequencies 

of errors, under respective hypotheses, in conceptually- 

possible indefinite repetitionsof the given experiraent. We turn 

now to an extension of the preceding Part I, C: 

" Inference methods with intrinsic justifications". Since our 

discussion here takes a somewhat different form, it will com- 

plement the earlier discussion of the case k = 2; for many details 

of interpretation, reference to the earlier discussion may 

useful even in connection with cases k > 2. 

Lemmas 1 and 2 of Section 2 above pay a basic role in 

support of the following interpretations. According to 

Lemma 2, any c.s. experiment E may be regarded as a mixture of 

c.s. simple experiments E,. It follows that any outcome of E may 

be regarded as:  (a) the selection of a component E, of E, 

determined randomly according to probabilities gh which are 

fixed, independently of the hypotheses; followed by:  (b) the 

observation of a single outcome of the selected experiment E. . 
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We observe: (1) The likelihood function on any observed outcome 

of E (that is, the column of the stochastic matrix E corres- 

ponding to any observed outcome of E) is necessarily the same 

as (proportional to) the likelihood function when that outcome 

is regarded as an outcome of a selected component Eh. 

(2) The likelihood function on any observed outcome of E determ- 

ines, essentially uniquely, the form of the simple c.s. component 

E, of E from which the observed outcome could have arisen. 

(A single column of a simple c.s. experiment, specified up to 

a constant of proportionality, determines the form of that 

experiment essentially uniquely.) (5) Since the selection of 

a particular component E, of E provides no information relevant 

to the hypotheses (although it determines the strength and nature 

of relevant evidence which can be provided by an outcome of 

Ev), it follows that for purposes of informative inference, 

any outcome of any c.s. experiment can and should be inter- 

preted in the same way as if it were an outcome of the essentially 

unique simple c.s. experiment determined by the observed like- 

lihood function. The variety of possible and possibly-useful 

interpretations of outcomes of simple c.s. experiments was 

illustrated in part in the preceding Section 3; such inter- 

pretations were expressed there in terms of error-probabilities, 

admitting frequency interpretations, defined in the simple 

c.s. experiment under consideration. 

To establish a similar conclusion for experiments which 

are not necessarily c.s., we use Lemma 1, and the notation of 

its proof, in Section 2 above. The evidential interpretation 

of any outcome X = J of any experiment E, should clearly 

coincide with the evidential interpretation of the following 
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outcome: the random selection of E, as a component of any 

mixture experiment E (of which E, Is in fact a component), 

followed by use of E, and observation of its outcome X = j. 

The introduction into our discussion of any such experiment 

E containing E, as a component is an arbitrary step; however, ■ 

the preceding comment shows that this step does not affect the 

recognizable evidential status of any outcome j of E,; and 

the following comments show that this step is useful in 

throwing additional light on the evidential character of such 

an outcome. We take E to have the form defined in the proof 
k   1 of Lemma 1: E = J"- 3) T- E., where the components E, are 

h^T  k h "      h 

defined as before. We are considering the evidential character 

of outcome j of E,, and we have agreed that this is the 

same as the evidential character of the outcome "E. and its 

j  outcome" of the mixture experiment E. But E is c.s., 

and therefore the conclusion established aboye is applicable 

th to its outcome "E, and its j  outcome". Thus we conclude: 

For purposes of informative inference, any outcome of any ex- 

periment can and should be Interpreted In the same way as 

an outcome of a simple c.s. experiment having the same likeli- 

hood function; the structure of the original experiment is 

Irrelevant, apart from determination of the likelihood function 

on the observed outcome. 

If k = 2, a simple c.s. experiment is a symmetric simple 

binary experiment 
E = 

Pll P12 
p12 pll 

,  which may be characterized 

by the single value a = ß = p,2 ^ 75 of its  "error-probabilities" , 
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as discussed In Part I above. For k = 3, a simple c.s. 

experiment E = (p.. .), with p,, > p,p >  p,-,, may be considered 

characterized by the values of its "error-probabilities" 

p,^, p,,; for this case, evidential interpretations of various 

specific forms, and their qualitative and quantitative properties 

in  relation to error-probabilities, were described in detail 

in Section 2 above. Similar considerations hold for k > J. 

5« Intrinsic confidence methods. One useful method of 

expressing part of the evidential meaning of an outcome of a 

simple c.s. experimenc is by usecf inference statements of 

the confidence set form. For any such experiment E = (p. .), 

with p,, > p12 "...>■ p., , the maximum likelihood estimator 

of the unknown hypothesis H. is formally a confidence set 

estimator with confidence coefficient p,,. The two most 

likely hypotheses, on any observed outcome, constitute a con- 

fidence set with coefficient (p,, + Pnp)» and so on. The 

set which, on any outcome, includes all but the least likely 

hypothesis is a confidence set with coefficient (1 - Plk.) • 

If, for example, p,, = p12 >  p,^ >  ..,  >  p,., then all such 

confidence sets except the first can be defined in the same 

way; construction of a maximum-likelihood confidence set 

consisting of a single hypothesis could also be given formally 

in this case, but would be of little interest for typical 

purposes of informative inference. 

Such maximum likelihood confidence sets are optimum in the 

sense (a) that each such set-estimator has, under each hypothesis, 

the largest possible probability of Including the true 

hypothesis, among all (possibly randomized) set-estimators 
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whose confidence-sets are restricted to contain the same 

number or fewer points (hypotheses); and in the sense (b) 

that each such set-estimator has probabilities of including 

various false hypotheses, when respective hypotheses are true, 

which cannot be strictly improved, except by reduction of 

the confidence coefficient. 

Such confidence sets were illustrated for the case k = 3 

in Section 2 above. The set of confidence coefficients of such 

estimators characterizes the structure of a simple c.s. experiment; 

for example, for k = 3, the respective confidence coefficients 

are p,. and p,, + p.^; from these values, we can immediately 

calculate p,p and p,-,, and thus determine the form of E = (p^J. 

If the experiment E whose outcome is to be interpreted 

happens to be of the simple c.s. form, then inference methods 

of the preceding kinds are confidence methods (confidence 

set estimation methods) of the kind introduced by Neyman: 

the confidence coefficients and error-probabilities referred 

to are then defined directly in terms of the structure of E=(p, .) 

as just described. These confidence coefficients and error- 

probabilities admit the usual frequency interpretations, in 

terms of conceptually possible repetitions of the given 

experiment E. 

If the experiment E happens to be c.s. but not simple, then 

it is (by Lemma 2 of Section 2 above) equivalent to a mixture 

of simple c.s. experiments. In this case the conclusion 

of the preceding Section can be given the interpretation: 

Any outcome of E should be interpreted as an outcome of the 
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corresponding simple c.s. component of E; in other words, any 

outcome of E should be interpreted "conditionally" with the 

selected simple c.s. component of E as the experimental frame 

of reference. In such a case, when confidence methods like 

those described above are used, based upon the simple c.s. 

experiment determined by the likelihood function on an observed 

outcome of E, these methods are formally an example of 

conditional confidence methods. Conditional applications of in- 

ference methods of standard kinds are widely used, and are 

generally considered appropriate for purposes of informative 

inference, when an appropriate conditional experimental frame 

of reference is recognized. Decomposition theorems such as 

Lemma 2 and its analogues may be considered mathematical analyses 

of the structures of statistical experiments which extend 

considerably the range of recognizably appropriate conditional 

frames of reference for purposes of informative inference. The 

confidence coefficients and error-probabilities of such conditional 

confidence methods admit the usual frequency interpretations, as 

conditional probabilities, in terms of conceptually possible 

repetitions of the given experiment E, conditional on the 

selection of the particular simple c.s. component of E which 

corresponds to the observed outcome. 

If the experiment E is not c.s., the conclusion of the 

preceding Section nevertheless supports interpretations of an 

outcome of E as if it were an outcome of the simple c.s. experiment 

E' determined by the likelihood function on the observed outcome. 

In general, E' is not a component of E; and if such interpretations 

are expressed, for example, by maximum likelihood confidence 
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methods based on E', then the confidence coefficients and error- 

probabllltles of such methods, which are defined In E', will 

not in general be interpretable as probabilities or conditional 

probabilities defined in S. For this reason, we designate such 

methods in general as Intrinsic confidence methods. Intrinsic 

confidence methods constitute an extension and generalization 

of confidence methods and conditional confidence methods, 

appropriate for purposes of informative Inference. (An intrinsic 

confidence method can always be regarded as a conditional 

confidence method in the hypothetical formal sense that, in 

some hypothetical c.s. experiment which contains the given 

experiment E as a component (Lemma 1), the intrinsic confidence 

method is also a conditional confidence method. This comment 

should not be confused with the development of the principal con- 

clusion of Section 4 above.) 

It should be noted that for a given k, different outcomes 

may give the same intrinsic confidence set with the same 

Intrinsic confidence coefficient, although these outcomes have 

different likelihood functions which do not coincide completely. 

In such a case, other Intrinsic confidence sets based on the 

respective outcomes will fail to coincide, reflecting differences 

in likelihood functions. . This illustrates that in general 

any single intrinsic confidence statement expresses only part 

of the evidential significance of an outcome, and is only an 

incomplete summary of the likelihood function. 
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6. An interpretation of the "principle of insufficient 
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reason" . 

In the method of treating statistical inference problems 

which was initiated by Bayes and Laplace, " uniform prior 

probabilities"were postulated for the respective statistical 

hypotheses under consideration, and the formal "posterior 

probabilities", calculated by Bayes' formula, were interpreted 

as giving inferences from observational data to the hypotheses 

in the absence of, or independent of, background knowledge or 

prior opinions concerning the hypotheses. Evidently the 

Intention of those who initiated and have used this method has 

been to treat, in suitably objective and meaningful terms, the 

problem of Informative inference, that is, the problem of 

evidential interpretation of experimental outcomes, as it 

occurs in empirical research situations. Following Laplace, 

the method was widely accepted during the nineteenth century. 

Analysis and criticism of the possible ambiguity of the notion 

of "uniformity" of prior probabilities, and of the unclear nature 

of such "prior probabilities" in general, has led to a general 

rejection of this method throughout the present century. 

(The use of prior probabilities, not in general " uniform", 

to express background knowledge and/or prior opinion, continues 

to be recommended by a distinguiphed minority of modern statistic- 

ians. However,such recommendations are not addressed directly 

to the problem of Informative Inference as described above; 

but to problems of using experimental outcomes, along with 

background knowledge, prior opinion, and information about specific 
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features of an Inference situation such as goals, practical 

consequences, etc., In order to reach appropriate declsbns 

or conclusions.) 

It is at least a striking coincidence that inference 

methods based upon the "principle of insufficient reason", 

in problems having suitable symmetry (or analogous) proper- 

ties, coincide in form (although they differ in interpretation) 

with modern inference methods derived without use of prior 

probability notions. For example, if an experiment E happens 

to be simple c.s., then formal assignment of prior probabilities, 

each equal to l/k, to the hypotheses H., leads to " posterior 

most probable" sets of hypotheses which coincide with the 

(optimum) maximum likelihood confidence sets found above; 

and each such set has a posterior probability which is 

numerically equal to the corresponding confidence coefficient. 

Now the analysis of preceding sections shows that for 

purposes of Informative inference, whatever the structure of E, 

its outcomes can and should be interpreted as outcomes of 

corresponding simple c.s. experiments. When such an appropriate 

experimental frame of reference for interpreting an experimental 

outcome is adopted, as it can and should be to serve the apparent 

Intention of those who initiated use of the "principle of 

insufficient reason", then the formal application of the latter 

principle can be regarded as a formal algorithm for calculating 

the intrinsic confidence sets and coefficients which themselves 

have the independent justifications given above; and the term 

" posterior probability (determined with use of uniform prior 

probabilities)" may be regarded as a traditional terminology, in 
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place of which we use the term " Intrinsic confidence coefficient", 

with the meaning established in the preceding Section. 

Thus the "principle of insufficient reason", in such 

problems and uses, must be regarded as one of those "principles" 

which, in various mathematical disciplines, have been recognized 

and used to obtain "correct" results, in advance of perfectly 

clear formulations of the problems considered and of the precise 

nature of "correct solutions" to such problems, (In experiments 

for an infinite number of hypotheses, the "principle of 

insufficient reason" has been interpreted and used, despite the 

technical difficulty of specifying the mathematical meaning of 

"uniform prior probabilities", in such a way that the likelihood 

function is taken to be the elementary "posterior probability 

function" with respect to some "natural", "uniform" measure on 

the parameter spacej while it is not necessary for mathematical 

reasons that the latter be probability measures, there remains 

the question of interpretation and possible ambiguity of 

"natural" or "uniform". We defer discussion of experiments for 

an Infinite number of hypotheses.) 

In retrospect, the early broad usage of the term "probability" 

is seen to have embraced at least the following kinds of meanings 

which now seem clear and distinct (although we have frequent 

occasion to use several of them in discussion of a single problem 

of a .single problem of inference): 

(a) Probability as used above to specify mathematical models 

of statistical hypotheses; admitting conceptual frequency inter- 

pretations. 
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(b) Prior probability (not in general uniform; and related 

posterior probability), as sometimes used to express prior opinion 

and background knowledge, brought to an inference problem. This 

aspect of inference situations has not been represented in our 

discussion, because it is not a part of the problem of informative 

inference as such. 

(c) Posterior probability (calculated from formal uniform prior 

probabilities; "principle of insufficient reason "). In place 

of this traditional usage, we have the preferable term "intrinsic 

confidence (coefficient)" which is defined as above in terms of 

the more basic likelihood function and the interpretations established 

for the latter. In brief, "intrinsic confidence", and the more 

basic "likelihood"with its interpretations, explicate and replace 

this traditional usage of "posterior probability". Similarly, 

"uniform prior probability" could well be replaced by "uniform 

prior likelihood", the latter denoting the constant likelihood 

function which properly represents absence of Informative observations 

(or presence of hypothetical uninformative outcomes) at the outset 

of an experiment. Then the traditional usage would be represented 

intact, with the term "probability" replaced by "likelihood" 

throughout, except for usage (a), and with all attention directed 

as above to the usual likelihood function. 

7. An interpretation of Fisher's "fiducial argument". 

For any experiment E = (p^ J» we can assume without loss 
X J 

of generality that the range of j is doubly-infinite,  - 00   < j < 00 , 

so that each row of (p^ J  is doubly-infinite,  with 
- 00^ J^ CO 

for each 1. The range of i may be, until otherwise specified, 

- h3 -1 
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either finite (1 < 1 < k), or countably-lnflnlte (1 < 1 < oo), 

or doubly-Infinite (-OD-« 1 < oo). We note that j is a sufficient 

statistic (not in general minimal sufficient), as is any one-to- 

one function of j. Any real-valued function t = t{j,i) of 1 and 

j is called a quaslstatistic; a quasistatistic becomes a statistic 

when it:i argument 1 is given any fixed value. A sufficient quasi- 

statistic is one which becomes a sufficient statistic when i is 

fixed, in turn, at each of its possible values. (A minimal 

sufficient quasistatistic is defined analogously.) A stationary 

quasistatistic is one which determines statistics each having 

the same distribution in the sense that, letting 

H(t,i) = Prob (t(X,i) < t|H ), we have H(t,i) = H(t,l), for each 

t and i. A pivotal quasistatistic is one which is both stationary 

and sufficient. 

If E is such that p. , = p. , , ,, i is called a translation 
l-J    1-X,J-1 

parameter, since for each i the distribution of X under H. 

coincides with the distribution of (X+i-1) under H,. We observe 

that in any such experiment, the quasistatistic t{j,i) = J-i+1 

is pivotal. 

In the case of a simple c.s. experiment for a finite number 

k of simple hypotheses, represented by a square matrix E = (Pi ,•)> 

the quasistatistic 

t(j,i) 

j-i+1,  if the latter is positive, 

J-i+l+k, otherwise, 

is pivotal. If the k outcomes J of such an experiment are 

regarded as cyclically ordered, as k uniformly-spaced points on 
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the  circumference of a circle, then 1 may be regarded as a translation 

parameter in an extended use of that term. We shall call the 

parameter 1 of any simple c.s. experiment a rotation parameter, 

since for each i the distribution of X (mod. k) under H. coincides 

with the distribution of (X+i-1) (mod. k) under E,. 

If E is simple c.s., then eich of its columns (possible 

likelihood functions) is, in the formal mathematical sense, a 

probability distribution over the possible values 1 of the unknown 

parameter. The same is true of any column of any experiment in 

which .1 is a translation parameter having a doubly-infinite range. 

If E is an experiment of one of these two forms, then an example 

or analogue of Fisher's "fiducial argument" gives the following 

definition: When an outcome X = j has been observed, take the 

th 
j  column of E as the "fiducial probability distribution" of the 

parameter 1. (We note that, in the case of such experiments, these 

distributions coincide formally with those obtained by formal 

application of the "principle of insufficient reason" discussed 

in Section 6 above.) 

The "fiducial argument" by which a "fiducial distribution" 

has usually been defined may be illustrated in the present case, of 

translation and rotation parameters i, with use of the pivotal 

quasistatistlcs (usually called, in this context, "pivotal 

quantities") t(j,i) defined above, as follows: For each i and 

integer t, we have Prob (t(X,i) <  tlH.) = H(t,l) = H(t,l), which 

is independent of 1. H(t,l) is formally a cumulative probability 

distribution with argument t; if X = j is an observed outcome of 

E, then the function G(i,j) of 1 defined by G(i,j) = 1 - H(t(J,i)-, 1) 

is formally a cumulative probability distribution function, termed 
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the "fiducial distribution of the parameter i, when X = J has 

been observed". In the present cases we have the corresponding 

discrete elementary "fiducial probability function" 

g(i»j) = G(i*.J) - G(i-l,j) = p. ., as stated above, which coincides 

with the likelihood function. In such cases, probability 

statements about i based formally on the fiducial probability 

function g(i,j) must parallel in form both confidence statements 

and statements based formally on the "principle of insufficient 

reason". 

Fiducial methods were developed by Fisher evidently for the 

purpose of treating what we have called the problem of informative 

inference. For experiments for a finite number of hypotheses, 

our conclusion in Section 5 above shows that an appropriate frame 

of reference for informative inferences is always provided by 

a simple c.s. experiment determined by the likelihood function 

on the observed outcome. Evidently the adoption of such a frame 

of reference would serve the general intention for which fiducial 

methods have been developed. Adoption of such a frame of reference 

would also extend considerably the scope of formal applicability 

of the "fiducial argument", since the conditions of its applicability 

are evidently not met in many experiments (for k hypotheses), but 

in any simple c.s. experiment fiducial probabilities can be defined 

formally, as above; such adoption would lead to fiducial probability 

statements about i which always parallel in form intrinsic confidence 

statements defined in Section 5 above. 
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The preceding discussion of fiducial methods has been 

restricted to formal definitions, and to an opinion concerning 

the general purpose to which the methods are addressed. It has 

been seen that "fiducial probabilities" defined as above are, 

like "posterior probabilities" (determined by use of the 

"principle of insufficient reason"), cases of mathematical 

probability distributions, defined on the range of an unknown 

parameter i. The only substantive interpretation which the 

present writer can suggest for the term "fiducial probability" 

is that the term seems to be an instance of the tradition of 

broad usage of "probability", initiated by Bayes and Laplace in 

the different form discussed in the preceding Section 6, and used 

to express statements of informative inference about unknown 

parameters. It seems to the present writer that the problem 

of informative inference itself, for which evidently fiducial 

methods have been developed, is clarified by the analysis of 

Section 4 above, and served well and clearly by the intrinsic 

confidence methods defined and interpreted as in Section 5 above. 

The scope of formal correspondence between intrinsic confidence 

methods and fiducial methods will be discussed for a wider class 

of problems in a following part of this paper. In the light 

of the preceding discussion, it will not be altogether unexpected 

if intrinsic confidence limits for the difference of means in the 

Behrens-Pisher problem exist and coincide in form with the 

fiducial limits given by Fisher for that problem. 
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8. The relativity of Intrinsic evidential Interpretations 

expressed in terms of error-probabilities. 

Our use of simple cyclic-symmetric experiments as a frame 

of reference has played a technical role in establishing the 

principal conclusion of Section 4 above, concerning the basic 

status and role of the likelihood function for purposes of 

informative inference. In addition we have found, in Section 5* 

that simple c.s. experiments provide a convenient useful frame 

of reference for techniques, such as intrinsic confidence methods, 

which express some of the evidential meaning of likelihood functions. 

The intrinsic confidence coefficients associated with such intrinsic 

confidence statements, and analogous error-probabilities which may 

be associated with other such intrinsic evidential interpretations 

of experimental outcomes, are defined and meaningful only in 

association with the simple c.s. experiment (determined by the 

likelihood function) which may conveniently be adopted as an 

appropriate frame of reference for evidential interpretations. 

Apart from convenience and simplicity, however, there is no 

reason of principle which recommends such frames of reference 

as uniquely appropriate for interpreting and expressing the 

evidential meaning of an observed likelihood function. The 

latter is basic and is itself evidentially meaningful, and its 

evidential meaning can be recognized in, and expressed in terms of, 

various alternative adequate experimental frames of reference. 

For example, if k = 2, an outcome j which gives the likelihood 

function (p-. -j PoJ = (c»99c), for any positive c, gives the 

likelihood ratio statistic the value 99> and can be interpreted 
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experiment) E = 
_.01 :99 

reference. In the latter ' 

i 

£8 

by use of the simple c.s. experiment (simple symmetric binary 

'■""     as a conveniently chosen frame of 

frame of reference, the outcome can be 

characterized as supporting Hp against H, with an evidential 

strength associated with error-probabilities equal to .01. 

(Such an inference statement is formally an example of an 

intrinsic confidence method: On the basis of the outcome described 

regardless of the structure of the experiment from which it was 

obtained, the hypothesis Hp (or the set of parameter points i 

consisting of the single point 1=2) constitutes an intrinsic 

confidence set (or in this case an intrinsic confidence point) 

estimate, having intrinsic confidence coefficient .99)« 

However,the same outcome can be characterized Just as 

properly, although perhaps less conveniently for some purposes, 

as evidentially equivalent to the second outcome of the 
faS/QQ 1/QQ' 

asymmetric simple binary experiment E' = y '-^ ' J/    in which 
|_ 0     1 J 

"false negatives" are impossible but "false positives" have 

probability 1/99 = .0101 > .01. 

The structure of E' is characterized by the two error- 

probabilities .0101, 0, while the structure or E is characterized 

by the two error-probabilities .01, .01. This example illustrates 

that when part of the evidential meaning of a likelihood function 

is expressed by use of intrinsically-associated error-probabilities 

(as in intrinsic confidence methods), the specification of the 

chosen experimental frame of reference (e.g. a simple c.s. 

experiment) must be included as an essential part of the interpretive 
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statements. No doubt, the choice of simple c.s, experiments, and 

their analogues in more general problems, will usually be convenient; 

and terms such as "intrinsic confidence coefficients" can be 

defined, as above, to refer automatically to such convenient frames 

of reference. 

Part B: Translation and scale parameters, 
9. Conditional inference methods« Let E denote any experiment 

having the following structure: Y is a random variable (r.v.) 

with c.d.f, G(y - G), where G is known, and the unknown translation 

parameter lies in any specified subset Xi-of the real line. (Alter- 

natively, let Y" be a positive random variable with c.d.f.. G(y/c), 
4}. 

with G known and the scale parameter c unknown, 0 < c < oo. Then 

Y = log Y has c.d.f, G(y - Q) with translation parameter © = log c, 

ru 
where G(u) = G' (exp(u)), Let G(u) = t g (u) du, - co< u < oo , 

-Leo 
Let x = (y,,*.«y ) denote a sample of n independent observations 

on Y. Let w = w(x) = {^ - 7i$»-*>7n  " ^^'f  let z = z(x) = J-^i 

then (w,2) is a sufficient statisticy having a probability density 

function h(w,z;©) = q(w) t(z - ö;w), where the marginal density 

function q(») of W, and the conditional density function t(,j,) 

of Z - ©, given that W = w, are known and independent of 0, 

For each fixed w, let E denote the experiment consisting of 

a single observation z on the r.v, Z with p.d.f, t(z - O/w) defined 

above, with unknown translation parameter Ö, Let E denote the 

mixture experiment in which an observation w is taken on the r.v,. 

W with p.d.f, q(w), defined above, and then the experiment E is 

performed. A sufficient statistic for E is (w,z), which has 

p.d.f, h(w,z;Ö) = q(w) t(z - ö;w), as in E above. Thus E = E | 

that is, the experiment E is equivalent for all inference purposes 
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to the mixture experiment E .  It follows that for typical purposes 

of informative inferences about Q,  an outcome x of E can and should 

be Interpreted as a corresponding outcome consisting of a single 

observation z  from the experiment. Ew, which has the known (condi- 

tional) p.d.f. t(z - 0;w). 

Instead of a fixed number n of observations j.  as above, 

consider any sequential sampling rule, defined with reference only 

to the observed sequences of differences Wp = (y-- y. ),.,.., 

wra " (y? " yl,S8*,5rm "" y^^•*',» which terminates with probability 

one. For any sequence of observations x = (y-pyp, ••.), let n = n(x) 

denote the number of observations y. required for terrainaticn^ 

then n((y - ©), nCy^ - 6),..»)) is a function independent of Q, 

which could be written n(x) = n(Wp(x), w (x),...). For each 

sequence x, let z = y-, and let w = wn/x)» Then as above we have 

that (w,z) is a sufficient statistic, with the distribution of w 

independent of Q, and the conditional p.d.f, of z having the form 

t(z - Q;w) with translation parameter 0, Thus the discussion and 

conclusion of the preceding paragraph is applicable also to such 

sequential experiments.  One useful class of sequential sampling 

rules have the following form: Continue sampling until the form 

of t(.jw), which depends only upon w, allows (conditional) inferences 

about 0 which are suitably highly inforative; e.g., until t(,;w) 

represents a translation-parameter family of distributions each of 

which is sufficiently highly concentrated to provide (conditional) 

confidence intervals for 0 which are suitably short and have suitably 

high confidence coefficients, as determined in the following section, 

10, Intrinsic confidence methods» If the range of 0 is the real 

line, then the conditional frame of reference E described above 3s 
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an experiment characterized completely by the likelihood function 

tU - ^w) of 0 on the observed outcome (w,z) of E; and the possible 

distributions of Z in Ew are a full translation group of distrib- 

utions ( - mo < 0 < oo ), Any conditional confidence methods of 

Inference, in such a case, may also be called intrinsic confidence 

methods, in a natural extension of the usage introduced in Section 

5 above. 

Let P(u;w) = I t(u;w) du for each u and w, 
4.00 

Let u(a,w) be defined as  the solution u of the equation a = P(u,w), 

and  let 0(z,w,a)  = z - u(a,w),  for each pair a,w for which the 

first equation has  a unique  solution.    Then ö{z,w,a)   is a lower 

a-level confidence limit estimator  (and/or an upper   (1 - a)-level 

upper confidence  limit estimator)  of 0   (conditional  onw), 

6(z,w,,5)  is a median-unbiased point-estimator of 6.     The pair 

0(z,w,.95),  e(z,w,.05)  is  a  90 o/o confidence  Interval estimator 

of  Ö. 

For each constant k = 0 and each w,   let 

A(w,k) = [u|l t(u,w) > kj , and let Y(w,k) = |   t(u;w)du . 

A(w,k) 

For each a,w, and k, let B = B(z,w,k) = fof (z - a) e A(w,k) }  9 

Then B is a Y-level confidence set estimator of 0- (conditional on w). 

Such estimators may be called maximum likelihood (conditional) 

confidence sets," it is easily verified that for each y,  such set 

estimators are optimum in the sense that they have (conditionally 

and unconditionally) minimum Lebesgue measure, among all set 

estimators whose confidence coefficients, conditional on w, are 

never smaller than y» 
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11. Discussion. It is Interesting that such  conditional con- 

fidence limits and sets coincide in all formal details (though not 

' in interpretation) with those based upon the traditional Bayesian 

"principle of insufficient reason" in which, after initial reference 

to a "uniform prior distribution of Q over - oo < 0 < co, " the 

likelihood function t(z - Ojw) is treated formally as a posterior 

p.d.f. of Q. 

Furthermore, within the conditional frame of reference of an 

experiment E | which seems appropriate for purposes of informative 

inference, z is a sufficient statistic, and the quasistatistic 

v(z,Q) =2-6 has the same distribution under each 0. Hence it is 

evidently possible to apply formally the "fiducial argument" used 

by Fisher to define a "fiducial probability distribution of 0," It 

is interesting that the resulting "fiducial p.d.f» of Q" coincides 

with the likelihood function t(z - Qjw), and inference statements 

about Q  of the fiducial type coincide in all formal details (though 

not in interpretation) with those obtained above as conditional 

confidence statements about 0, 

The principal conclusion of the preceding sections may be stated 

briefly as follows:  For purposes of informative inference concerning 

a translation parameter 9, regardless of the structure of an 

experiment E (so long as 9 is a translation parameter with respect 

to the distributions of outcomes of E), the appropriate frame of 

reference is determined just by the likelihood function on the 

outcome observed', this frame of reference is an experiment 

(generally different from E) in which all possible outcomes give 

likelihood functions differing from that observed only by a trans- 

lation. ¥e recall that, as in Sections $  and 8 above, each 
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conditional (or intrinsic) confidence method gives only a partial 

summary and interpretation of the likelihood function, and that the 

latter, with the totality of its possible interpretations, is basic 

to informative inference,  (A logarithmic transformation reduced 

scale-parameter problems to translation-parameter problems.) 

The usual general approach to point-and confidence-interval 

estimation, for example as formulated and developed in [2], takes 

the given experiment E as the basic frame of reference for inference 

methods and statements. Examples 1, 2, Ij., 5» 7, and 8 of [2] involve 

translation or scale parameters, and in all but the first two 

examples  the confidence methods given there differ markedly from 

those developed above.  For purposes of informative inference, 

the formulation and methods of the present paper seem preferable 

in principle, for the reasons given above. 

The methods of the preceding sections for translation and 

scale parameters have important points of agreement and of difference 

with those given by Pitman [3]. 

The methods of the preceding sections for translation parameters 

admit Immediate generalization to multiparameter problems, such as 

a p.d.f. glyn-^yp-0) of a random vector Y = (Y-^Y^), Analogous 

methods apply to rotation parameters such as the case Y = (R,Z)J( 

with p.d.f« g(r,z-.ö), Ogr<oo, Og z-0 < Ztr, where (r,z) are 

the polar coordinates of a point y in the plane, A specific example 

is the case of a bivariate normal distribution, with identity co- 

variance matrix and with mean lying on the unit circle. 
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